CBSE practice Questions

Area of Parallelograms and Triangles Worksheet

MCQ on Areas of parallelograms and Triangles

Ques. A parallelogram ABCD and a rectangle ABPQ are on the same base AB and between the same parallels AB and CQ. If AB = 8 cm and AQ = 6 cm, find the area of ||gm ABCD.
(a) 52 cm2
(b) 46 cm2
(c) 48 cm2
(d) 58 cm2
Ans. (c)

Ques. In a parallelogram ABCD ∠D = 60o then the measurement of ∠A
(a) 120o
(b) 65o
(c) 90o
(d) 75o
Ans. (a)

Related: Number series questions

Ques. In ABC, AD is a median and P is a point is AD such that AP : PD = 1 : 2 then the area of ABP =
(a) 1/3 x Area of ABC
(b) 2/3 x Area of ABC
(c) 1/3 x Area of ABC
(d) 1/6 x Area of ABC
Ans. (d)

Ques. Find the area a rhombus, the lengths of whose diagonals are 16 cm and 24 cm respectively.
(a) 92 cm2
(b) 192 cm2
(c) 108 cm2
(d) 168 cm2
Ans. (b)

Ques. The sum of the interior angles of polygon is three times the sum of its exterior angles. Then numbers of sides in polygon is
(a) 6
(b) 7
(c) 8
(d) 9
Ans. (c)

Related: Quadratic equation questions and answers

Ques. ABCD is parallelogram. If AB = 3.6 cm and altitude corresponding to sides AB and AD are respectively 5 cm and 4 cm, then AD will be
(a) 5.5 cm
(b) 3.5 cm
(c) 2.5 cm
(d) 4.5 cm
Ans. (d)

Ques. In ABC if D is a point in BC and divides it the ratio 3 : 5 i.e., if BD : DC = 3 : 5 then, ar (ADC) : ar(ABC) = ?
(a) 3 : 5
(b) 3 : 8
(c) 5 : 8
(d) 8 : 3
Ans. (c)

Ques. Find the area of trapezium whose parallel sides are 8 cm and  6 cm respectively and the distance between these sides is 8 cm.
(a) 56 cm2
(b) 52 cm2
(c) 58 cm2
(d) 54 cm2
Ans. (a)

Related: all Prime minister of India

Ques. The area of trapezium whose parallel sides are 9cm and 6cm respectively and distance between these sides is 8 cm will be
(a) 50 cm2
(b) 60 cm2
(c) 70 cm2
(d) 80 cm2
Ans. (b)

Ques. Area of rhombus whose diagonals are 16cm and 24cm will be
(a) 182 cm2
(b) 202 cm2
(c) 92 cm2
(d) 192 cm2
Ans. (d)

Ques. In a parallelogram ABCD, AB = 8 cm. The altitudes corresponding to sides AB and AD are respectively 4 m and 5 cm. Find AD.
(a) 6.4 cm
(b) 6.6 cm
(c) 6.5 cm
(d) 6.2 cm
Ans. (a)

Related: Train questions

Subjective Questions

  • Prove: A diagonal of parallelogram divides it into two triangles of equal area.
  • E, F, G, H are respectively, the mid-points of the sides AB, BC, CD and DA of parallelogram ABCD. Show that the quadrilateral EFGH is a parallelogram and its area is half the area of the parallelogram ABCD.
  • Show that the diagonals of a parallelogram divide it into four triangles of equal area.
  • In figure, PQRS and ABRS are parallelograms and X is any point on the side BR. Show that
    (i) ar. (PQRS) = ar. (ABRS)
    (ii) ar. (AXS) = ½ ar. (PQRS)

Related: Circle geometry questions

  • Prove that parallelogram on the same base and between same parallel are equal in area.
  • ABC is a triangle in which D is the mid-point of BC and E is the mid-point of AD. Prove that the area of BED=1/4 area of ABC.
  • Prove: The area of a trapezium is half the product of its height and the sum of the parallel sides.
  • In a triangle ABC, E is any point on its median AD, show that ar. (ABE) = ar. (ACE).
  • Prove that parallelogram and a rectangle on the same base and between the same parallels are equal in area.
  • Triangles ABC and DBC are on the same base BC; with A, D on opposite sides of the line BC, such that ar(ABC) = ar(DBC). Show that BC bisects AD.

Related: Compound interest questions and answers

  • Parallelogram ABCD and rectangle ABEF have the same base AB and also have equal areas. Show that the perimeter of the parallelogram is greater than that of the rectangle.
  • The diagonals of a parallelogram ABCD intersect in O. A line through O meets AB is X and the opposite side CD in Y. Show that ar (quadrilateral AXYD) = ½ far(parallelogram ABCD).
  • Prove: Triangles having equal areas and having one side of the triangle equal to corresponding side of the other, have their corresponding altitudes equal.
  • A farmer was having a field in the form of a ||gm PQRS. He took any point A on RS and joined it to points P and Q. In how many parts the field is divided? What are the shapes of these parts? The farmer wants to sow wheat and pulses in equal portions of the field separately. How should he do it?
  • If a triangle and a parallelogram are on the same base and between the same parallels, then prove that the area of the triangle is equal to half the area of the parallelogram.

Related: Square root questions

  • A ABC in which D is the mid-point of BC and E is the mid-point of AD.
  • P and Q are any points lying on the sides DC and AD respectively of a parallelogram ABCD. Show that ar. (APB) = ar. (BQC).
  • Diagonals AC and BD of a quadrilateral ABCD intersect each other at P. Show that : ar(APB) + ar(CPD) = ar(APD) x ar(BPC)
  • Prove: Two triangles on the same base (or equal bases) and between the same parallels are equal in area.
  • Prove: The area of parallelogram is the product of its base and the corresponding altitude.
  • ABCD is a parallelogram. X and Y are the mid-points of BC and CD respectively. Prove that ar. (AXY) = 3/8 ar. (||gm ABCD).

Related: Biology multiple choice questions and answers

  • ABCD is a quadrilateral and BD is one of its diagonal as shown in the figure. Show that the quadrilateral ABCD is a parallelogram and find its area.
  • The diagonals of a parallelogram ABCD intersect at a point O. Through O, a line is drawn to intersect AD at P and BC at Q. Show that PQ divides the parallelogram into two parts of equal area.
  • If each diagonal of a quadrilateral separates into two triangles of equal area, then show that the quadrilateral is a parallelogram.
  • P and Q are any two points lying on the sides DC and AD respectively of  parallelogram ABCD. Prove that : ar (APB) = ar(BQC).
Share with your Friends...
Share on Facebook
Facebook
Tweet about this on Twitter
Twitter
Share on LinkedIn
Linkedin
Pin on Pinterest
Pinterest
Print this page
Print

About the author

Vishal Arora

Leave a Comment