# Mathematical Induction questions with answers ### Mathematical induction and Divisibility problems:

Ques. For all positive integral values of n, 32n – 2n + 1 is divisible by
(a) 2
(b) 4
(c) 8
(d) 12

Ans. (a)

Related: Electric field test questions

Ques. If n ∈ N, then x2n – 1 + y2n – 1 is divisible by
(a) x + y
(b) x – y
(c) x2 + y2
(d) x2 + xy

Ans. (a)

Ques. If n ∈ N, then 72n + 23n – 3. 3n – 1 is always divisible by
(a) 25
(b) 35
(c) 45
(d) None of these

Ans. (a)

Ques. If p is a prime number, then np – n is divisible by p when n is a
(a) Natural number greater than 1
(b) Irrational number
(c) Complex number
(d) Odd number

Ans. (a)

Related: p Block elements questions

Ques. For every natural number n, n(n + 1) is always
(a) Even
(b) Odd
(c) Multiple of 3
(d) Multiple of 4

Ans. (a)

Ques. If n ∈ N, then 11n + 2 + 122n + 1 is divisible by
(a) 113
(b) 123
(c) 133
(d) None of these

Ans. (c)

Ques. For every natural number n, n(n2 – 1) is divisible by
(a) 4
(b) 6
(c) 10
(d) None of these

Ans. (b)

Ques. The statement P(n) “1 x 1! + 2 x 2! + 3 x 3! + … + n x n! = (n + 1)! – 1” is
(a) True for all n > 1
(b) Not true for any n
(c) True for all nN
(d) None of these

Ans. (c)

Ques. For every natural number n
(a) n > 2n
(b) n < 2n
(c) n = 2
(d) n = 2n2

Ans. (b)

Ques. The remainder when 599 is divided by 13 is
(a) 6
(b) 8
(c) 9
(d) 10

Ans. (b)

Ques. For each n ∈ N, the correct statement is
(a) 2n < n
(b) n2 > 2n
(c) n4 < nn
(d) 23n > 7n + 1

Ans. (c)

Ques. 10n + 3(4n+2) + 5  is divisible by (n ∈ N)
(a) 7
(b) 5
(c) 9
(d) 17

Ans. (c)

Ques. For natural number n, (n!)2 > nn, if
(a) n > 3
(b) n > 4
(c) n ³ 4
(d) n ³ 3

Ans. (d)

Related: Kinetic theory test

Ques. For natural number n, 2n (n – 1)! < nn, if
(a) n < 2
(b) n > 2
(c) n ³ 2
(d) Never

Ans. (b)

Ques. For positive integer n, 10n – 2 > 81n, if
(a) n > 5
(b) n ³ 5
(c) n < 5
(d) n > 6

Ans. (b)

Ques. When 2301 is divided by 5, the least positive remainder is
(a) 4
(b) 8
(c) 2
(d) 6

Ans. (c)

Related: Electrochemistry practice quiz

Ques. For every positive integer n, 2n < n! when
(a) n < 4
(b) n ³ 4
(c) n < 3
(d) None of these

Ans. (b)

Ques. x(xn–1 – nan–1) + an(n–1) is divisible by (x – a)2 for
(a) n > 1
(b) n > 2
(c) All nN
(d) None of these

Ans. (c)

Ques. For every positive integral value of n, 3n > n3 when
(a) n > 2
(b) n ³ 3
(c) n ³ 4
(d) n < 4

Ans. (c)