Complex Numbers Practice Test (Mathematics)

Complex Numbers jee mains

Complex Numbers Questions with Answers:

Ques. Triangle ABC, A(z1), B(z2), C(z3) is inscribed in the circle |z| = 2. If internal bisector of the angle A meets its circumcircle again at D(zd) then
(A) zd2 = z2z3
(B) zd2 = z1z3
(C) zd2 = z2z1
(D) none of these
Ans. (a)

Ques. If the complex numbers z1, z2, z3 represent the vertices of an equilateral triangle such that |z1| = |z2| = |z3|, then z1 + z2 + z3 =
(a) 0
(b) 1
(c) –1
(d) None of these
Ans: (a)

Ques. If z1, z2, z3 are vertices of an equilateral triangle with z0 its centroid, then z12 + z22 + z32 =
(a) z02
(b) 9z02
(c) 3z02
(d) 2z02
Ans. (c)

Related: Hydrocarbons – Organic Chemistry Questions

Ques. If (1 + x + x2)n = a0 + a1x + a2x2 + … + arxr + … + a2nx2n, then a0 + a3 + a6 + =
(a) 3n – 1
(b) 3n
(c) –3r
(d) 3r – 1
Ans. (a)

Ques. Which of the following is correct?
(A) 6 + i > 8 – i
(B) 6 + i > 4 – i
(C) 6 + i > 4 + 2i
(D) None of these
Ans. (d)

Ques. Number of solutions to the equation (1 –i)x = 2x is
(a) 1
(B) 2
(C) 3
(D) no solution
Ans. (a)

Ques. If z1 and z2 be the nth roots of unity which subtend right angle at the origin. Then n must be of the form
(a) 4k + 1
(b) 4k + 2
(C) 4k + 3
(D) 4k
Ans. (d)

Related: Work energy and power sample problems with solutions

Ques. If z3 – 2z2 + 4z – 8 = 0 then
(A) |z| = 1
(B) |z| = 2
(C) |z| = 3
(D) None
Ans. (b)

Ques. If z  be  any  complex  number  such  that |3z –2| + |3z +2| = 4,  then  locus  of  z is
(A)  an ellipse
(B) a circle
(C)  a  line-segment
(D)  None of these
Ans. (c)

Ques. For  a  complex  number   z ,  | z – 1| + |z +1| = 2. Then z lies on a
(A) parabola
(B) line segment
(C) circle
(D) none of these
Ans. (b)

Ques. If  |z1/z2| = 1 and arg (z1 z2) = 0, then
(A) z1 =  z2
(B) |z2|2 = z1z2
(C) z1z2 =  1
(D) none of these
Ans. (b)

Ques. Number of non-zero integral solutions to (3 + 4i)n = 25n is
(A) 1
(B) 2
(C) finitely many
(D) none of these
Ans. (d)

Related: Free Trigonometry Practice Tests

Ques. If |z| < 4, then  | iz +3 – 4i| is less than
(A) 4
(B) 5
(C) 6
(D) 9
Ans. (d)

Ques. If the equation |z – z1|2 + | z – z2|2 = k represents the equation of a circle, where z1 º 2+ 3i, z2 º 4 + 3i are the extremities of a diameter, then the value of k is
(A) ¼
(B) 4
(C) 2
(D) None of these
Ans. (b)

Ques. If z = x + iy satisfies the equation arg (z – 2) = arg(2z + 3i), then 3x – 4y is equal to
(A) 5
(B) –3
(C) 7
(D) 6
Ans. (d)

Ques. Number of solutions of Re (z2) = 0 and |Z| = aÖ2, where z is a complex number and a > 0, is
(A) 1
(B) 2
(C) 4
(D) 8
Ans. (a)

Ques. If (x – iy) 1/3 = a – ib, then x/a + y/b equals
(A) -2 (a2 + b2)
(B) 4 (a + b)
(C) 4 (a – b)
(D) 4 ab
Ans. (a)

Related: Physics Optics Problems

Ques. If |z| = 1, then |z – 1| is
(A) < |arg z|
(B) >|arg z|
(C) = |arg z|
(D) None of these
Ans. (a)

Ques. The  locus  of  z  which  satisfied  the  inequality log0.5|z – 2| > log0.5|z – i| is  given  by
(A) x+ 2y > 1
(B) x – y < 0
(C) 4x – 2y >  3
(D) none  of these
Ans. (c)

Ques. If |z1| = 4, |z2| = 4, then |z1 + z2 + 3 + 4i| is less than
(A) 2
(B) 5
(C) 10
(D) 13
Ans. (d)

Ques. If  |z +1|  = z + 1 , where z is a  complex  number, then  the locus  of z  is
(A) a straight line
(B) a ray
(C) a circle
(D) an arc of a circle
Ans. (b)

Ques. If the complex numbers z1, z2, z3 are in A.P., then they lie on a
(A) circle
(B) parabola
(C) line
(D) ellipse
Ans. (c)

Related: Anaerobic respiration quiz

Ques. If  points  corresponding  to  the complex  numbers z1, z2, z3 and z4 are  the  vertices of a  rhombus, taken in  order,  then  for a non-zero  real number k
(A)  z1 – z3 = i k( z2 –z4)
(B) z1 – z2 = i k( z3 –z4)
(C) z1 + z3 = k( z2 +z4)
(D) z1 + z2 = k( z3 +z4)
Ans. (a)

Question: If z is a complex number, then |3z – 1| = 3|z – 2| represents
(a) y-axis
(b) a circle
(c) x-axis
(d) a line parallel to y-axis
Ans: (d)

Ques. The roots of equation zn = (z +1)n
(A) are vertices of regular  polygon
(B) lie on a circle
(C) are collinear
(D) none of these
Ans. (c)

Ques. Let z1 and z2 be the complex roots of the equation 3z2 + 3z+ b = 0. If the origin, together with the points represented by z1 and z2 form an equilateral triangle then the value of b is
(A) 1
(B) 2
(C) 3
(D) None of these
Ans. (a)

Related: kinetic theory of gases practice problems

Ques. If x = 1 + i, then the value of the expression    x4 – 4x3 + 7x2 – 6x + 3 is
(A) –1
(B) 1
(C) 2
(D) None of these
Ans. (b)

Ques. For all complex numbers z1, z2 satisfying |z1| = 12 and |z2 – 3 – 4i| = 5, the minimum value of |z – z2| is
(a) 4
(b) 3
(c) 1
(d) 2
Ans. (d)

Ques. If two non-zero complex numbers are such  that   |z1 + z2|  = |z1 |  – |z2|  then z1/z2 is;
(a) a positive real number
(b) a negative real number
(c) a purely imaginary number
(d) none of these
Ans. (b)

About the author

Yash Bansal

Yash is co-founder of Examsegg. Yash loves to solve questions on reasoning and mathematics. He taught himself how to blend different techniques to get accurate solution in lesser time.

What is water pollution? What is Inventory Management?